
Closed Set Text Independent Speaker

Identification using Kernel Machines

By: Bhusan Chettri

Project Supervisor: Prof. Thomas Hain

Programme: MSc Computer Science with Speech and Language Processing

This report is submitted in partial fulfillment of the requirement for the

degree of MSc in Computer Science with Speech and Language Processing.

September 10, 2014

Declaration

All sentences or passages quoted in this dissertation from other people’s work have

been specifically acknowledged by clear cross-referencing to author, work and page(s).

Any illustrations which are not the work of the author of this dissertation have been

used with the explicit permission of the originator (where possible) and are specifically

acknowledged. I understand that failure to do this amounts to plagiarism and will be

considered grounds for failure in this dissertation and the degree examination as a whole.

Name: Bhusan Chettri

Signature:

Date: September 10, 2014

ii

Abstract

Speaker Identification is the task of identifying whether a particular person exists in

the enrolled set of speakers or not by using their voice characteristics. One of the key

challenges however is to efficiently deal with the channel and environment variability in

the speech signal to improve the identification performance. Here we deal with closed

set text independent system which means that the users must be an enrolled user of the

system and there is no constraint in the text being spoken during enrollment and testing.

The main aim of the project is to implement Speaker Identification System based

on Kernel Machines and extend the concept by Frame Concatenation to include more

wider temporal context and hence enhance the identification accuracy. The system is

trained on 50 target speakers and performance is evaluated on 150 test utterances. The

baseline GMM-UBM system is built using ALIZE toolkit to compare the performance

of our system. Three different variants under this Frame Concatenation approach have

been explored in the project. However none of our System could outperform the baseline

GMM-UBM accuracy of 57.3%.

iii

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Thomas Hain, Professor,

Department of Computer Science, University of Sheffield for giving me an opportunity to

do my Master’s Dissertation under his guidance. His consistent guidance and feedback

throughout the project has been remarkable which helped me progress and complete my

dissertation on time.

Also, I take this opportunity to thank Mauro Nicolao, Research Associate, SPandH

Research group, Department of Computer Science for his time and patience in listening

my queries and giving useful suggestion. His help for building baseline system has saved

a lot of my time which i could spare doing the research work on my project.

I am also very grateful to Erfan and all other PhD students of Prof. Thomas Hain

working in the MINI lab for being so kind and helpful to me at all the times during my

dissertation.

Last but not the least, i would like to thank my parents for their consistent support

and prayer for my studies and good health that helped me complete this Master’s Program

in Computer Science at the University of Sheffield.

iv

List of Figures

2.1 Enrolling Speakers into the Sytem . 8

2.2 Components of a Speaker Recognition System 9

2.3 Structure of a binary classifier based on Support Vector Machine. 10

3.1 Structure of a Polynomial Classifier . 19

3.2 Proposed method using Feature Concatenation and Expansion 26

3.3 Proposed method using Frame Concatenation and Expansion 26

3.4 Proposed method without any Polynomial Expansion 27

v

List of Tables

5.1 Baseline GMM-UBM Results . 34

5.2 Initial System Performance on test42 data set 35

5.3 Initial System Performance on test1024 data set 35

5.4 Different Impostor Population Influence on Identification Performance . . 36

5.5 Compensation for different length of training data 37

5.6 Performance of the System trained using 30 seconds speech per Speaker. . 38

5.7 Performance on test144 data set using only 5 seconds speech per test

utterance . 38

5.8 Identification Performance of the Proposed System using Method A on

test150 data set . 39

5.9 Performance of the Proposed System using Method B on test150 data set 40

5.10 Performance of the Proposed Method C based System on test150 data set 41

vi

Contents

Declaration ii

Abstract iii

Acknowledgements iv

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Speaker Recognition . 1

1.2 Kernel Machines . 2

1.3 Objective . 3

1.4 Overview of the Report . 3

2 Literature Review on Speaker Recognition 5

2.1 Introduction . 5

2.2 Features . 5

2.3 Speaker Modeling Techniques . 6

2.3.1 Vector Quantization (VQ) . 6

2.3.2 Gaussian Mixture Model (GMM) 6

2.3.3 Universal Background Model (UBM) and GMM-UBM 7

2.3.4 Support Vector Machines . 9

2.3.5 i-Vectors . 11

2.3.6 Others . 12

2.4 Problems, Challenges and Solution . 12

2.4.1 Quality . 12

2.4.2 Length . 13

2.4.3 Cross Channel . 13

2.4.4 Population Size . 13

2.4.5 Solution . 13

2.5 Research Trends: Current and Future . 15

vii

2.6 Tools for Research . 16

2.7 Summary . 16

3 Kernel Machines for Speaker Classification 17

3.1 Introduction : Polynomial Classifier . 17

3.1.1 Training the Classifier . 17

3.1.2 Classification/Recognition . 19

3.2 Major Steps . 20

3.2.1 Feature Extraction . 20

3.2.2 Normalization and Voice Activity Detection (VAD) 21

3.2.3 Training Impostors . 21

3.2.4 Training Target Speakers . 22

3.2.5 Test Models . 23

3.2.6 Scoring and Evaluation . 23

3.3 Concatenation of Frames: Proposed Approach 25

3.3.1 Method A: Feature Concatenation and Expansion 25

3.3.2 Method B: Frame Concatenation and Expansion 25

3.3.3 Method C: Frame Concatenation without Expansion 26

3.4 Summary . 27

4 Baseline Setup 28

4.1 Database Description . 28

4.1.1 Data Definition . 29

4.1.2 ALIZE Configuration Files . 30

4.2 GMM-UBM Training . 31

4.2.1 Feature Extraction . 31

4.2.2 Energy Normalization . 31

4.2.3 Voice Activity Detection . 32

4.2.4 Feature Normalization . 32

4.2.5 UBM Training . 32

4.2.6 Training Target Speaker . 32

4.3 Testing . 33

4.4 Summary . 33

5 Experiments and Results 34

5.1 Baseline Results . 34

5.2 Initial Experiments . 34

5.3 Different Impostor Population . 36

5.4 Compensation for Different Length Training Data 37

5.5 Varying Length of Training and Test Data 37

5.5.1 Fixed Amount of Training Data 38

viii

5.5.2 Fixed Amount of Test Data . 38

5.6 Concatenation Results . 39

5.6.1 Method A . 39

5.6.2 Method B . 40

5.6.3 Method C . 41

5.7 Summary . 42

6 Conclusion 43

Bibliography 48

ix

Chapter 1

Introduction

Speech is the primary means of communication among humans that delivers many level

of information. It conveys linguistic information like message being spoken, language and

speaker information (eg gender, emotion, physiological characteristics). The speech signal

also conveys information about the environment where the speech was recorded/produced

and transmitted. Speech Recognition algorithms are more concerned with creating models

that can recognize the message present in the speech signal with high accuracy while

Speaker Recognition algorithms are dedicated towards developing robust algorithms to

model the speaker more accurately there by achieving higher recognition rates. Though

many algorithms and techniques are available, Polynomial Kernels have been used in this

project for Speaker Identification. This chapter discusses some of the basic concepts in

Speaker Recognition.

1.1 Speaker Recognition

Speaker recognition is the task of identifying or verifying the person by using the character-

istics of their voices. The task can be broadly divided into two major categories: Speaker

Verification or authentication and Speaker Identification [48]. Speaker Verification is the

process of verifying whether a person is actually that person who he/she claims to be or

not, on the basis of a sound recording, typically of length 5-60 seconds. Naturally prior

recordings of speakers to be recognized have to be available, but often these are short

too. From these so-called speaker models are derived and stored. Recognition involves

comparing the recording of the claimed person with the particular claimed speaker model

in the system. In contrast, Speaker Identification [48] is the process of identifying whether

the particular person exists in the enrolled set of speakers. It involves comparing the

claimed speaker against the pool of enrolled speaker models in the system.

Speaker Recognition systems are further divided into two types [34], text dependent

and text independent systems. In text dependent systems, the text being used during the

enrollment and recognition must be same. This means that during the enrollment phase

users are asked to input their voice with respect to some predefined text into the system

1

CHAPTER 1. INTRODUCTION 2

for which speaker models are created. During recognition phase they are prompted to

read the same text that was used during the enrollment [34][48]. However, with text

independent systems, their is no restriction with the words being spoken during enrollment

and recognition phase. The set of words spoken during enrollment and recognition can be

completely different. Thus this task is quite challenging and difficult in comparison to

text dependent systems.

Since we are dealing with closed set identification, the user must be an enrolled user

of the system. However in case of an open set identification problem the system must

be capable of determining whether the user belongs to one of the enrolled user or not.

This means that, it involves first determining whether the user is one of the registered

user from the pool of users. The second stage is only carried out if the user is one of the

enrolled user else he/she must be rejected as an impostor.

The performance of a Speaker Recognition system can be measured differently for

different task. As the output of a Closed Set Speaker Identification system is a speaker

identity predicted from a set of enrolled speakers in the system, the identification accuracy

[46] is used to measure the performance which is defined as

identification accuracy =
correctly identified segments

total # of segments tested
∗ 100 (1.1)

On the contrary with Speaker Verification systems performance is measured in a

different manner. There are two types of error associated with verification systems: false

acceptance and false rejection [20]. False acceptance error occurs when an impostor is

accepted as a speaker and false rejection is a situation when a true speaker is rejected by

the system as an impostor. Therefore the overall performance of a such systems is defined

in terms of Equal Error Rate (EER) [20][42] which is a situation where false rejection

equals false acceptance as shown in following equation.

EER = False Acceptance = False Rejection (1.2)

1.2 Kernel Machines

A Kernel Machine is basically characterized by a Kernel Function k(.,.) [4] that represents

a measure of similarity between two vectors through a simple inner product in a high

dimensional feature space (also called Kernel Space). The following equation shows a

Kernel Function [4]

k(x, y) = 〈φ(x), φ(y)〉 (1.3)

where k is the Kernel, x,y are the input vectors and φ is a mapping function that transforms

the input vector x and y from input space to a high dimensional Kernel Space. These

Kernel Function have been widely used with Support Vector Machines for performing

binary classification [17]. With such Kernel Function the data set which is non linear in

CHAPTER 1. INTRODUCTION 3

the input space becomes linearly separable in the higher dimensional space. This is one

of the key and fundamental property that makes Kernel Machines very powerful.

The dimension of the feature vector in the Kernel Space is very large, even infinite

as in the case of Radial Basis Kernel (RBF)[13][49]. So practically and computationally

this becomes challenging and normally not used. However the solution to this problem is

by applying the so called ’Kernel Trick’ [13]. With this trick we can get all the task

done that were suppose to be carried out in this high dimensional Kernel Space without

actually visiting this Kernel Space. In other words we would not require to do the actual

transformation to kernel space. The Kernel Function shown below

k(x, y) =
(
xT y + c

)d
(1.4)

is a Polynomial Kernel of degree d [4]. The Kernel Trick in this equation allows Kernel

Function to measure the similarity between the two vectors with a simple dot product

and then by raising the result to the power of d, we get our required result. All this

computation is carried out in input space without ever having to perform Polynomial

Expansion into higher dimensional space.

1.3 Objective

The aim of the project is to investigate direct Kernel based Speaker Identification Systems

and to explore the extension of existing regimes to neighboring context relations. The

system being developed is a Closed Set Text Independent System where recognition

operation can be performed only on enrolled set of users and there is no restriction in the

words being spoken during enrollment and recognition. In the first phase of the project

the regime to derive Polynomial Kernels as described in [14] should be implemented using

Python. The performance should be tested on a subset of the NIST SRE 2008 evaluation set

that allows reasonable assessment while constraining computational complexity. Adequate

GMM-UBM baselines need to be obtained. In a second stage the Kernels should be

extended to wider temporal contexts. This can be achieved for example by extension of

Kernels to neighboring frames, i.e concatenation of neighboring frames. An alternative is

indirect context extension through deep neural network front-end feature computation.

The computational complexity at this point is potentially large, and will require grid

computing.

1.4 Overview of the Report

In this chapter we have briefly described the basic concepts in Speaker Recognition.

Chapter 2 shall cover a detailed literature on Speaker Recognition. In Chapter 3 we will

describe the main methodology used in this project that is based on Kernel Machines for

Speaker Identification. Chapter 4 briefly discusses various steps that were used to build

CHAPTER 1. INTRODUCTION 4

the GMM-UBM baseline system through the ALIZE toolkit. Chapter 5 describes different

experiments that were performed throughout the project along with the experimental

results. Chapter 6 finally concludes the report.

Chapter 2

Literature Review on Speaker

Recognition

In this chapter we shall discuss the literature on Speaker Recognition starting with

the features that are commonly used for modeling target speakers, different modeling

approaches that exist and has been explored so far in the field. We shall also briefly

discuss the history/evolution of the technology, various problems and challenges in Speaker

Recognition and different open source tools and softwares available for research in this

field.

2.1 Introduction

The idea behind making computers recognize human by their voice, so called Speaker

Recognition was initiated and encouraged in the early 1960s with the work of authors in

[22] at bell laboratories where they built an isolated digit recognition system using the

formant frequency that was measured over the vowel regions of each digit. This particular

work motivated and encouraged many researcher to take up research and development

in this technology and progress towards making the system more robust and enhance

the recognition performance. Eventually over the period of last ten years the technology

has really progressed as evident from various Speaker Recognition Systems presented to

the National Institute of Standards and Technology (NIST) [25] that provides a common

platform for computing the performance of the Speaker Recognition Systems.

2.2 Features

The first and foremost step in any Automatic Speech Recognition system is called feature

extraction phase which is commonly referred as the ”Front End”. This is often called

as the pre-processing step where the raw speech signal is converted into a sequence of

acoustic feature vectors that represents some specific information about the speech signal.

5

CHAPTER 2. LITERATURE REVIEW ON SPEAKER RECOGNITION 6

The most commonly used acoustic features for Speech Recognition are Mel Frequency

Cepstral Coefficients (MFCC) [23], Linear Prediction Cepstral Coefficients (LPCC) [9][36],

and Perceptual Linear Prediction Cepstral Coefficients (PLPC) [30][41]. These features

represent spectral information that is obtained through short time windowing of speech

segments.

MFCC features are directly derived from the FFT (Fast Fourier Transformation)

power spectrum whereas the LPCC and PLPC uses an all-pole model [36][30] to represent

the smoothed spectrum. The centers and bandwidths of mel-scale filterbank are based on

the mel-frequency scale shown below

m = 2595 log10(1 +
f

700
) (2.1)

where f = frequency in hertz and m = frequency in mel scale.

It gives more emphasis on lower frequencies and thus matches the idea behind human

perception of the speech signal. The filterbank spectral representation are transformed to

cepstral coefficients by taking discrete cosine transformation (DCT). Only DCT coefficient

2-13 are kept making a 12 dimensional MFCC vector [23] while discarding all other

coefficients including the first coefficient representing the energy component.

Among the different types of features PLPC and MFCC are mostly used in Automatic

Speech Recognition Systems [37]. Though authors in [9] have shown application of LPCC

features in Speaker Recognition but currently MFCC have found more wider usage in

Speaker Recognition applications as evident from the fact that the systems presented in

2008 SRE evaluation were mostly based on MFCC features [25].

2.3 Speaker Modeling Techniques

In this section we shall be briefly discussing some of the classical modeling techniques

that has been used in the field of Speaker Recognition.

2.3.1 Vector Quantization (VQ)

These models are commonly referred as non parametric models where a set of feature

vectors belonging to each speaker are compressed into a single cluster of phonetic sounds

referred as a VQ codebook [27]. This codebook is then used to model each speaker. Thus

a template for each speaker model is created. Recognition procedure simply proceeds by

matching the stored speaker template against the unknown test utterance. However these

models fail to capture the variabilities that can come in an unconstrained speech task.

2.3.2 Gaussian Mixture Model (GMM)

Literature [46][42] shows that gaussian mixture model (GMM) forms the core of the state

of the art technique in text independent Speaker Recognition. GMM is a stochastic model

CHAPTER 2. LITERATURE REVIEW ON SPEAKER RECOGNITION 7

[42] based on an assumption that all the feature vectors follow a gaussian distribution that

is characterized by mean and the variance. GMM can be thought of as an improvement

over the VQ method where the clusters are overlapping. In other words GMM is based

on soft clustering approach where each feature vector has a non zero probability of being

generated from any one of the gaussian component rather than being assigned to the

nearest cluster as in the case with VQ models.

A GMM is a weighted sum of K component gaussian densities as shown in the equation

below

p(~x|λ) =
K∑
i=1

wibi(~x) (2.2)

where ~x is a D-dimensional feature vector, bi(~x), i = 1, ..., k are the component gaussian

densities and wi, i = 1, ..k are the mixture weights [46].

Each component density is a D-variate gaussian function of the form

bi(~x) =
1

(2π)D/2 |Σi|1/2
exp

{
−1

2
(~x− ~µi)

′
Σ−1i (~x− ~µi)

}
(2.3)

with ~µi and Σi as the mean vector and covariance matrix respectively. Also the mixture

weights satisfy the constraint
k∑

i=1
wi = 1.

Therefore a speaker model using GMM is represented by three parameters: mean

vectors, covariance matrices and mixture weights from all component densities. These

parameters are often represented using the notation shown below [46].

λ = {wi, µi,Σi} , i = 1, 2,K (2.4)

The above model parameters are estimated using Expectation Maximization (EM) algo-

rithm [11] that ensures a monotonic increase in the likelihood value of the data. More

details about the GMM approach can be found in [46].

The authors in [46] have addressed various performance issues related to the length

of the training data and number of gaussian components that is essential to maintain a

good recognition performance. They claims that minimum 16 gaussian components is

required to effectively model speaker characteristics and minimum 1 minute training data

is essential to get a good recognition performance, below which the performance degrades

dramatically.

2.3.3 Universal Background Model (UBM) and GMM-UBM

The universal background model, UBM is commonly referred as world model which is

an independent speaker model being trained with lots of training data (hours of speech)

from large number of different speakers in order to capture the general characteristic of a

speaker [45]. The optimal value of these model parameters are estimated using the EM

algorithm [11]. During speaker enrollment as shown in Figure 2.1 the parameters of the

CHAPTER 2. LITERATURE REVIEW ON SPEAKER RECOGNITION 8

background model (UBM) are adapted using the speaker specific feature distribution.

Hence the adapted GMM-UBM model is further used as the speaker model which is more

representative and reliable than an individually trained GMM.

.
Figure 2.1: Enrolling Target Speakers into the System [34]

This methodology of adaptation solves the problem of data sparsity with the target

speaker, because many often we have very less training data for the target speakers. This

approach makes the model more powerful and perform better to unseen data as it acquires

the general attributes from the underlying UBM model [48]. The most commonly used

adaptation method to derive a speaker specific GMM from the background model is the

maximum a posteriori (MAP) adaptation [11]. Literature shows that adapting means

only from the speaker data works well while the other parameters are common to all

speaker models [45].

During recognition as shown in Figure 2.2, the score for the unknown test utterance is

computed using both the MAP adapted speaker model and the UBM (impostor) model.

The final score is defined as the log likelihood ratio between the target score and the

background score [45][34] as shown below

Λ(X) = log p(X|λSPK)− log p(X|λUBM) (2.5)

where log p(X|λSPK) is the log likelihood score of test utterance X using target model

and log p(X|λUBM is the score obtained through background model.

There is a slight difference in the way scoring is performed with respect to Identification

and Verification. Verification [34] is basically a binary classification task where only the

particular target model is used to compute the score for the claimed identity. If the

score is above the defined threshold then the speaker is accepted as a valid user else it is

rejected as an impostor [15].

On the contrary identification involves finding the best matching model for the

unknown test utterance, hence the task is called a multi class classification problem. Here

score is obtained using each of the enrolled models in the system and the model for which

CHAPTER 2. LITERATURE REVIEW ON SPEAKER RECOGNITION 9

.
Figure 2.2: Components of a Speaker Recognition System [34]

a highest score is obtained [48][15], becomes the identified speaker of the unknown test

utterance [45].

2.3.4 Support Vector Machines

Support Vector Machines (SVM) are discriminative classifiers [17] that has been widely

used in Speaker Recognition because of its ability to strongly distinguish between two

classes of data, (Speaker and the Impostor) with good precision and accuracy. SVM

transforms the input space into a higher dimensional feature space and then separates

the two classes with an optimal hyper plane [49][13]. Unlike training generative models

(GMM) which requires only set of training examples for building speaker models or the

background models (UBM), training the discriminative model needs training data from

both the target speaker and the impostor [17].

The SVM shown in Figure 2.3 is basically a binary classifier that finds a seperating

hyperplane between two classes as a decision boundary. The hyperplane is chosen in

such a way that the distance between the nearest vectors and the hyperplane in both

sides are maximized [18]. This criterion of finding an optimal hyperplane is often called

maximum margin criterion and the closest vectors on each side are called the Support

Vectors [18][17]. The classifier discriminant function [17] is written as

f(x) =
N∑
i=1

αitiK(x, xi) + d (2.6)

where xi are the Support Vectors, ti is the class output labels that could be either +1

or -1 (+1 for speaker class and -1 for the impostor),
∑N

i=1 αiti = 0, and αi > 0. These

parameters along with the bias term d are estimated from the training data set through

CHAPTER 2. LITERATURE REVIEW ON SPEAKER RECOGNITION 10

Figure 2.3: Structure of a binary classifier based on Support Vector Machine that

seperates two classes of data (+1 and -1) with an optimal separating hyperplane with the

help of support vectors [34].

some optimization process [17]. Here the Kernel Function K(.,.) is defined as a mapping

of the input feature space into a high dimensional Kernel Space, expressed as

K(x, y) = p(x)tp(y) (2.7)

where p(x) represents the transformed vector x in higher dimensional space (could be

an infinite dimension). The non linear data in input space that was difficult to classify

becomes linear in a higher dimensional space and hence classification becomes easier. This

is the main reason why Support Vector Machines is considered to be a better classifier

among other binary classifiers.

One of the key feature of this classifier is the ability to achieve a very high degree

of performance with much lesser training data compared to GMM-UBM [18]. The

generalization ability of SVM to unseen data makes it more popular and a powerful

classifier [18]. When performing Speaker Recognition the speaker utterance will have

variable sequence of feature vectors, however SVM requires these sequence of vectors to

be represented by a single static data vector suitable for doing classification. Some of the

approaches to do this transformation is by making use of Polynomial Classifiers [49][16],

Sequence Kernel functions as described in [17] and GMM supervectors [18].

In case of Speaker Verification we basically train a target class with all vectors labelled

as +1 and -1 for the impostor class. The optimal hyperplane is found that optimally

separates this two classes. Score is then computed for each vector in the test utterance

based on whether they are classified as target or the impostor. If the score is above a

defined threshold then the speaker is accepted as a valid user else it is rejected as an

impostor.

CHAPTER 2. LITERATURE REVIEW ON SPEAKER RECOGNITION 11

As SVM is a binary classifier [18], to deal with Speaker Identification problem which

is actually a multiclass problem, one vs all training criterion is followed where each target

model is trained against all the remaining N-1 speakers. N binary classifiers are trained

in this way for N target speakers. During classification, a score for the test utterance is

obtained from each of these N classifiers and the classifier for which maximum score is

obtained is selected as the predicted speaker of the test utterance.

2.3.5 i-Vectors

The supervector for a speaker that consist of speaker dependent mean components is

normally extracted by performing a MAP adaptation on the background model (UBM)

[34]. However this supervector not only contains speaker specific information but other

factors like channel variations and noise are also included during the adaptation process.

Joint Factor Analysis (JFA) [32] provides a mechanism to deal with the inter speaker and

channel variability thereby enhancing the performance of the Speaker Recognition System.

The intuition behind JFA is that the speaker dependent supervector can be expressed as

a combination of following four terms [24]

M = m+ V y + Ux+Dz (2.8)

where m is a speaker-independent supervector (from UBM), V and D are speaker

dependent subspaces that represents the eigenvoice matrix and the residual matrix

(diagonal) respectively and U represents the channel subspace (eigenchannel matrix) [33].

The vectors x, y and z denotes the speaker, channel and speaker-specific residual factors

respectively.

Speaker Recognition using JFA technique requires computation of these subspaces (V,

U and D) and then further estimating the factors x, y and z for a given training utterance

of the target speaker [32]. The channel dependent subspace and channel factor (term Ux)

is then removed from the above equation (2.8) to obtain a channel/session compensated

speaker model (i.e, M - Ux). Score is then obtained by computing the likelihood of the

unknown test utterance using this new model [24].

However one drawback with JFA is that the number of dimension after decomposition

of the supervector is very high. The concept of i-Vector has been proposed [24] to deal

with this dimensional issue and currently this i-Vector based system has been the state of

the art technique in Speaker Recognition [24]. An i-Vector is a compact representation

that combines the speaker and channel subspace into a single low dimensional subspace

called the ’total variability space’.

Therefore the supervector M using i-Vector approach is expressed by the following

equation

M = m+ Tw (2.9)

where m is same as in equation (2.8), T is a low rank rectangular matrix called the total

variability matrix and w is the i-Vector which is of very low dimension that represents

CHAPTER 2. LITERATURE REVIEW ON SPEAKER RECOGNITION 12

speaker specific information [24].

2.3.6 Others

Many other different techniques like Hidden Markov Models (HMM), Neural Networks

(NN) have also been used in the literature for Speaker Recognition. HMM is a stochastic

model that has been very successful in Speech Recognition because of its ability to model

the temporal information in the speech signal. HMM has also been used in Speaker

Recognition [38] but it has not been as much successful as it is with Speech Recognition.

Neural Networks [47] on the other hand are discriminative models that is based on

modeling a decision function which can be used to discriminate well between a target

speaker and an impostor. NN has been used in different forms [47][39] for solving different

types of task, however one key problem with the NN is the overhead of training the entire

network all over again whenever a new speaker model is to be added to the system. On

the contrary this is not the case with the Polynomial Classifiers as described in [16] where

entire models need not be re-trained when a new speaker is to be added. The procedure

just requires computation of the new speaker model and the existing pool of speaker

models is updated with the new model [16].

2.4 Problems, Challenges and Solution

The main challenges and problems that is often encountered by the research community

in Speaker Recognition is in making advancement and progress towards achieving more

robustness and accuracy under various real time situations. Some of the factors that

influence this are quality of the speech signal being used to train and test the systems,

length of the training and test utterances, size of the target population being modeled (in

case of identification this is an important factor) and also the phonetic content of the

speech signal.

2.4.1 Quality

The quality of the speech signal being used to train and test the speaker models plays

a very significant role in recognition performance [27]. Models trained with noisy data

performs poorly during recognition phase. If the noise in the training data are not taken

care of properly before training the target speakers then the resulting model will not only

represent speaker specific properties/attributes but would also represent the background

noise. This means that during classification these models would not be able to discriminate

with 100% confidence between a true speaker and an impostor [34]. As a result we find

degradation in the accuracy of the recognition system. Similarly if models were trained

without much noise in it (sort of clean speech) and testing performed on test utterances

containing some background noise then also models would not perform very well due to

CHAPTER 2. LITERATURE REVIEW ON SPEAKER RECOGNITION 13

the presence of noise and silence frames in the test utterances [34]. As a consequence

performance in such case also would be very poor.

2.4.2 Length

Another important contributing factor that affects the performance of the Speaker

Recognition system is the duration/length of speech signal used for training and testing.

There must be sufficient training data to train the target models because with more

training data the models will be able to learn more wider phonetic content and hence

would be able to give good recognition performance [46] during testing. In other words as

we train our models with more and more data, generalization ability of the models to

unseen data would increase thereby increasing the recognition accuracy on unseen test

utterances. Similarly length of test data is also very important to have a good recognition

accuracy. With very small length test data there are high chances of misclassification

because there is very less information supplied to the recognition system which would

find it difficult to discriminate between the target speaker and the impostor with enough

confidence. Reynolds et al.(1995) [46] have shown how different length training and test

data affects the performance of the Speaker Identification System based on Gaussian

Mixture Models.

2.4.3 Cross Channel

The performance of the Speaker Recognition System would be affected adversely when

there is a channel mismatch between the training data and the test data as it introduces

spectral differences and distortions in the speech signal [34]. This condition could be

because of use of different microphones and different transmission channel (cellular

phones, telephone speech). Therefore it is very important to ensure that proper channel

compensation methods are used before training and testing on both the data sets to

eliminate this channel variation effect. This would help improve the performance of the

system else it can dramatically degrade the recognition accuracy [48].

2.4.4 Population Size

The number of target speaker being modeled also directly affects the performance of

the recognition system especially with the Speaker Identification Systems [46]. With the

increase in the population size the accuracy of Speaker Identification Systems degrades

because the probability of misclassification increases as there is an increase in the number

of comparison required to be made against each of the enrolled models in the system [48].

2.4.5 Solution

Following approaches/methods are commonly employed to deal with some of the problems

that were discussed in the previous sections in order to make the system robust and

CHAPTER 2. LITERATURE REVIEW ON SPEAKER RECOGNITION 14

enhance the performance of the Speaker Recognition System.

Voice Activity Detection

Voice Activity Detection (VAD) [34] commonly referred as speech detection is the task of

detecting voice segment from the given speech signal. The main goal here is to remove

all silence segments from the speech signal and perform the desired operation on only

speech segments [29]. This is a very important step in any Speech/Speaker Recognition

task. It works by first finding the frame with maximum energy in the entire utterance

and then a speech detection threshold is set. It then compares each frame energy against

this threshold and discards them if its below this threshold.

Feature Normalization

Feature Normalization [48] is basically carried out to compensate the differences in the

training and test data that arises due to the use of different channels. The simplest

way to perform Feature Normalization is to compute the mean of each feature over the

entire speech utterance (for every training and test utterance) and remove this mean

from each frame [9]. Hence, whichever channel the training and test speech originates

from, the mean of every frame in the speech utterance becomes zero. This eventually

reduces the effect of channel on the signal which otherwise could have become a major

reason for degradation in the recognition performance. Some of the other normalization

techniques that has also been used in the literature are feature warping [40], relative

spectral (RASTA) filtering [31] and feature mapping [44].

Score Normalization

Score Normalization [48] is another form of normalization that is basically applied to

Speaker Verification Systems. The main idea behind Score Normalization is to set a

common verification threshold which is done by transforming the scores from different

speakers in a similar range [10]. The Score Normalization is given by the following

equation

s′ =
s− µ1
σ1

(2.10)

where s and s’ are the original and normalized score respectively and µ1, σ1 are the

estimated mean and standard deviation of the impostor score distribution [34].

Different Score Normalization techniques have been applied to Speaker Verification

Systems. Some of the commonly used ones are Zero Normalization (Z-norm) [43], Test

Normalization (T-norm) [10] and Handset Dependent Score Normalization (H-norm)

[26][43]. These methods are found to be quite effective in reducing the Speaker Verification

error rates [43]. In Z-norm [43] a set of impostor utterances is scored against each potential

target model. The parameters µ1, σ1 are then estimated from the resulting impostor

score distribution. This normalization is however carried out during speaker enrollment.

CHAPTER 2. LITERATURE REVIEW ON SPEAKER RECOGNITION 15

In T-norm [10] which is performed during testing, the test utterance is also scored

against some pre-selected set of non-target models which have similar session characteristics

to that of the actual target model. The normalization parameters are then derived from

the resulting score distribution. H-norm [26] method combines the advantage of both

the Z-norm and the T-norm. Here Z-norm is first performed followed by the T-norm. It

has also been very effective in compensating the channel mismatch problem however it

requires both the offline and online normalization [26].

2.5 Research Trends: Current and Future

Speaker Recognition is one of the active and hot area of research in Speech Technology.

Research and Development in this field has been carried out for over more than five

decades [27]. In the beginning (early 1960s), the recognition was performed through Aural

and Spectrogram comparison, then Template Matching models were used [27]. Then

Dynamic Time Warping methods came into practice followed by the Statistical Pattern

Recognition techniques like GMM, HMM, Neural Networks and showed an improvement

in the recognition performance. Currently i-Vectors [24] have become state of the art

techniques for Speaker Recognition with a very good performance [34][24].

Initially the speech corpus used for doing research in Speaker Recognition were created

under clean laboratory conditions and were limited to very few speakers [27]. Recognition

performance on such data set were found to be remarkable. As development progressed

in this field more larger speech corpus with more number of target speakers [21] were

released. These corpus were no longer originated under clean conditions rather the corpus

were now built using telephone speech (landline channel) that consist of background noise.

This made the task more challenging and realistic.

The progress and advances in the technology is often evaluated by NIST [25] that

provides a common structure and setup for evaluation of Speaker Recognition Systems

being developed across the world. The technology has progressed very well over the last

10 years [27] and many companies have commercialized Speaker Recognition Systems,

particularly Verification Systems to be used as a biometric to control access to information

and other services [22].

The current state of the art systems are based on short time spectral features [27].

However there are many other sources of information in speech signal which has not been

explored fully. There is a need to explore higher order information in speech signal like

prosodic features and other high level features which could make system more robust

and contribute in enhancing the performance [34]. So identifying the best feature from a

speech signal and researching towards finding a robust real time recognition system would

be an interesting challenge in the research community.

CHAPTER 2. LITERATURE REVIEW ON SPEAKER RECOGNITION 16

2.6 Tools for Research

Various open source tools has been made available for doing research in Speaker Recogni-

tion so that one need not have to do it from scratch. The most popular and commonly

used one is ALIZE toolkit [35] that is developed at Universite d’ Avignon, France. Hidden

Markov Model Toolkit (HTK)[2] is another popular statistical modeling package that is

often used to extract features from the speech signal. Other tools like SVMLite [6], and

SVMTorch [7] are available for implementing Support Vector Machines. For plotting the

detection error tradeoff (DET) curves DETware toolbox provided by NIST [3] can be

very useful. In this project ALIZE and HTK has been used for building GMM-UBM

baseline system and extracting mfcc features respectively.

2.7 Summary

In this chapter we reviewed the literature on Speaker Recognition and covered various

modeling paradigms that were used so far in the field. Different types of spectral features

were also discussed that were used to build speaker models. Further some of the issues

related to performance of the recognition system in terms of robustness were also briefly

discussed.

Chapter 3

Kernel Machines for Speaker

Classification

In this chapter we shall discuss the methodology based on Polynomial Kernels [15][8]

for Speaker Identification. The input feature space is first transformed into a very

high dimensional Kernel Space through polynomial expansion and a decision boundary

(hyperplane) is placed between speaker and the impostor data in such a way that the

number of misclassified data vector is minimized. This is the main idea behind training

the classifiers using Kernel Machines which we shall discuss in this chapter.

3.1 Introduction : Polynomial Classifier

Traditional Statistical Classifiers like GMM creates probabilistic speaker model by esti-

mating the mean and covariance of the training data [42]. Polynomial Classifiers on the

other hand is a discriminatively trained classifier that requires feature vectors from both

the target speaker and the impostor for building a speaker model.

3.1.1 Training the Classifier

The training of the classifier is based on minimizing the Mean Squared Error Criterion

as discussed in [15]. Initially all the feature vectors x1, x2....xN are projected into

higher dimensional Kernel Space using polynomial expansion function [16]. The classifier

discriminant function is defined as

f(x) = wtp(x) (3.1)

where p(x) is the expanded super vector of polynomial basis terms and w is a vector of

model parameters. For example second order polynomial expansion of a feature vector

with two dimensional features x = [x1, x2] yields six dimensional features [16] as shown

below.

p(x) = [1 x1 x2 x
2
1 x

2
2 x1x2] (3.2)

17

CHAPTER 3. KERNEL MACHINES FOR SPEAKER CLASSIFICATION 18

As the classifier shown in Figure 3.1 is a discriminative binary classifier, we have used

one vs all training approach and trained 50 classifiers, one for each target speaker. Let w

represent the desired class (model) and y(w) be the ideal output with a value of 1 if w is

a speaker and 0 for impostor. Therefore the resulting training equation can be stated as

wspk = argmin
w

E
{

(wtp(x)− y(w))2
}

(3.3)

where p(x) represents the polynomial expansion of x and E represents the expectation

over the data set X and the model w. With target speaker data x1, x2, ..., xNspk, and

impostor data y1, y2, ..., yNspk above equation can be further simplified as

wspk = argmin
w

Nspk∑
i=1

∣∣wtp(xi)− 1
∣∣2 +

Nimp∑
i=1

∣∣wtp(yi)
∣∣2 (3.4)

The above mathematical equation could also be expressed in a matrix notation as shown

below. Here the target speaker and impostor data are represented by matrix Mspk

and Mimp whose rows are the polynomial expansion [16] on the feature vectors of the

respective training utterances. In other words, these matrices represents the speaker and

impostor data in a higher dimensional kernel space.

Mspk =

p(x1)

p(x2)

.

.

p(xNspk
)

 and Mimp =

p(y1)

p(y2)

.

.

p(yNimp)

 (3.5)

Further the two matrices can also be combined and represented by a single matrix M as

given below

M =

[
Mspk

Mimp

]
(3.6)

Therefore using the above matrix notation, equation (3.4) can be written as

wspk = argmin
w

‖Mw− o‖2 (3.7)

where o denotes the vector of Nspk ones and Nimp zeros representing the ideal output for

speaker and impostor [14]. Normal method equation [28] approach can be used to solve

equation (3.7) as

MtMw = Mto (3.8)

The above equations are further simplified as

(Mt
spkMspk + Mt

impMimp)wspk = Mt
spk1 (3.9)

Expressing these equations in terms of correlation matrix R gives us the following equation

Rwspk = Mt
spk1 (3.10)

CHAPTER 3. KERNEL MACHINES FOR SPEAKER CLASSIFICATION 19

where

R = Rspk + Rimp (3.11)

Rspk = Mt
spkMspk (3.12)

Rimp = Mt
impMimp (3.13)

and 1 represents the vector of all ones that signifies the output values for the target

speaker being trained.

3.1.2 Classification/Recognition

Polynomial Kernel based classifier structure for performing Speaker Recognition is shown

in figure 3.1.

Figure 3.1: Structure of a Polynomial Classifier [8].

As can be seen there is a model w for each speaker. Each input feature vector xi

is first transformed into the Kernel Space through polynomial expansion and a score

is computed using the scoring function which is just a dot product between the model

parameters and the expanded feature vector p(xi). This dot product in other words is a

measure of similarity between the model and the unknown test data. The final utterance

score is generated by taking the average over the length of the utterance. Total score is

given by

TotalScore =
1

N

N∑
i=1

wtp(xi) (3.14)

Here basically the score is normalized since the test utterances are of variable length.

With the above approach of computing per frame score and then finding the average

score, the computational time incurred is very high. Therefore we have used a fast scoring

method [16] which allows us to write the equation (3.14) in the following form

CHAPTER 3. KERNEL MACHINES FOR SPEAKER CLASSIFICATION 20

TotalScore = wt

(
1

N

N∑
i=1

p(xi)

)
(3.15)

and compute the average over all the expanded vectors first and then find the score

through a single dot product.

Hence the recognition operation using this structure works as follows: For verification

task, a score is computed using the claimed speaker model for the unknown utterance. It

is accepted as a valid speaker if the score is above the defined threshold else it is rejected

as an impostor. However in case of identification, the score is computed using all the

enrolled models and the one that yields the highest score is selected as a predicted model.

3.2 Major Steps

In this section we list out and discuss the major steps that were followed to implement

the Speaker Identification System in the project.

3.2.1 Feature Extraction

Feature Extraction is the front end of any Speaker Recognition System. In this project

we have used the Mel Frequency Cepstral Coefficients (MFCC) [23] features to build the

speaker models. These coefficients are derived by taking the discrete cosine transformation

on the melfilter bank energies mi as shown below

cn =

√
2

P

P∑
i=1

micos

[
n(i− 1

2)π

P

]
(3.16)

where P is the number of filterbank channels [23].

The speech data originates from the subset of NIST SRE-2008 data set [3]. More

detailed description about the database is given in section 4.1. HTK toolkit [2] has been

used for extracting the desired MFCC features. We have only used 12 static MFCC

features in our entire experiment. Following command is used to retrieve the features

using HCopy.

HCopy -C config input_speech.wav ouput.mfc

In the above command config is a standard configuration file that is used to define

what features to extract from the input speech file. As we are considering only telephone

speech in our project we need to extract MFCC features for both channels (A and

B) for each audio file as there are two speakers involved in a telephonic conversation

across the channels. Hence we have two configuration files featExtract A.cfg and

featExtract B.cfg for channel A and channel B respectively.

The variable TARGETKIND is used to specify the type of features that we want to

extract. If we want to have static and delta coefficients with energy then we need to set

CHAPTER 3. KERNEL MACHINES FOR SPEAKER CLASSIFICATION 21

this variable with MFCC_E_D. However in this project this variable is set to MFCC_Z as

we are interested in only static coefficients with mean normalization. The term ’Z’ is

appended to instruct the HTK to perform Cepstral Mean Normalization (CMN) along

with feature extraction. Also we set the variable NUMCEPS to 12 to indicate the desired

number of cepstral coefficients. Also we need to specify the channel information by setting

the variable STEREOMODE as LEFT or RIGHT for left and right channels respectively.

HList is another function available in HTK that allows us to display the content of

MFCC features on the command line which can be useful to check if the features have

been extracted correctly or not.

3.2.2 Normalization and Voice Activity Detection (VAD)

Normalization [48] is performed by calculating the cepstral mean over whole utterance and

removing this mean from each frame. The relevant parameters in the HTK configuration

file as discussed in section 3.2.1 are set to perform the Cepstral Mean Normalization while

doing feature extraction using the HCopy command.

Further, Voice Activity Detection [34] is performed to remove all the silence frames

from the utterance, so as to ensure that the modeling of speaker is performed on voiced

segments only while avoiding inclusion of silence/noise frames in the model. If the silence

frames are not removed then the model being trained would include not only spectral

characteristics of the speaker but it would include noise and silence also. This means that

the degree of misclassification increases dramatically and the accuracy of the recognition

becomes very poor. Hence this is one of the very important step in Speech/Speaker

Recognition.

3.2.3 Training Impostors

The main advantage of this system [8] is the flexibility to train the impostor model

(impostor matrix) separately and store it so that it could be simply loaded on to the

training program while training the target speakers. The pseudo code for training the

impostors is shown in Algorithm 1. As can be seen, three input parameters are required

flist, order and impostorPath. flist is the file list that contains the path information

of the MFCC features of the impostor files, order denotes the order of polynomial to

be used during expansion and the impostorPath specifies the path where the impostor

matrix is required to be stored.

Here the feature vectors are extracted from each impostor and silence frames are

removed through VAD. Then polynomial expansion is performed using the polynomial

order (provided as an input) to transform all the feature vectors into a Kernel space.

These high dimensional frames are all accumulated row wise in a matrix Mimp. Then the

Correlation Matrix Rimp is computed as a product between M t
imp (transpose of Mimp) and

the matrix Mimp that basically measures the similarity between all the newly generated

CHAPTER 3. KERNEL MACHINES FOR SPEAKER CLASSIFICATION 22

Algorithm 1 Following algorithm is used to create an Impostor Matrix

1: procedure trainImpostor(flist, order, impostorPath)

2: Initialize Rimp as an empty structure to store impostor matrix.

3: for each impostor file in flist do

4: data← retrieve feature vectors for impostor file . Feature Extraction

5: newData← VAD(data) . Voice Activity Detection

6: allRows← expandFrame(newData, order) . Polynomial Expansion

7: append allRows in matrix Mimp

8: M t
imp ← tranpose(Mimp) . Find transpose

9: Rimp ← mulitply(M t
imp,Mimp) . Impostor Correlation Matrix

10: Save the impostor matrix Rimp permanently in impostorPath.

cross correlated features in the higher dimension. Thus we find a very high correlation in

the diagonal elements of the Correlation Matrix in comparison to non diagonal elements.

3.2.4 Training Target Speakers

The pseudo code shown in the Algorithm 2 is followed to train all the target speakers.

Initially the impostor matrix is loaded into the program and for each speaker file, feature

vectors are extracted followed by Voice Activity Detection that is being performed to

remove all the silence frames.

Polynomial expansion is then performed to convert the MFCC features into higher

dimension, which is stored in a speaker matrix Mspk. Its transpose is computed next.

Then the Correlation Matrix is computed as shown in step 9 of the algorithm 2. The

speaker and impostor Correlation Matrix is combined together to get a final Correlation

Matrix R as shown in step 11. The vector Aspk in step 10 signifies the particular speaker

being modeled. Computation of the required model parameters w for the speaker is

done by performing Cholesky Decomposition which is much efficient computationally in

comparison to finding inverse of the Correlation Matrix and multiplying with the speaker

vector Aspk.

Cholesky Decomposition [1] works as follows: First it decomposes the Correlation

Matrix R into lower triangular matrix L and its transpose Lt. Then it solves the linear

system of equation for Y once and uses this solution to solve another linear system for

model w as shown in steps from 12 to 15 in the algorithm. Next model id of the speaker

file is extracted from the reference list that was supplied with the data set. The model id

and the respective model parameters are appended in the data structure MODELS which

in our case is a python list.

In this way model id and model parameters w for each speaker file is computed and

appended in the MODELS which is then saved permanently in the given path information.

The training algorithm discussed here has been used from [16].

CHAPTER 3. KERNEL MACHINES FOR SPEAKER CLASSIFICATION 23

Algorithm 2 Following algorithm is used to train Target Speakers

1: procedure trainSpeaker(flist, order, impostor,modelF ile)

2: Initialize MODELS as an empty structure to store trained models.

3: Rimp← impostor . Load Impostor Correlation Matrix

4: for each speaker file in flist do

5: data← retrieve feature vectors for speaker file

6: newData← VAD(data) . Voice Activity Detection

7: Mspk ← expandFrame(newData, order) . Polynomial Expansion

8: M t
spk ← tranpose(Mspk)

9: Rspk ← mulitply(M t
spk,Mspk) . Speaker Correlation Matrix

10: Aspk ← mulitply(M t
spk, 1) . 1 is a Vector of Ones

11: R← add(Rspk, Rimp) . Final Correlation Matrix

12: Solve RWspk = M t
spk1 for target speaker model Wspk

13: L← cholesky(R) . Using Cholesky Decomposition

14: Lt ← transpose(L) . Transpose Lower Triangular Matrix L

15: Y ← solve(L,Aspk) . Solve Linear System LY = Aspk

16: Wspk ← solve(Lt, Y) . Solve for Speaker Model

17: modelID ← getSpeakerId(speaker)

18: Append model parameters Wspk and modelId in MODELS.

19: Save MODELS in the the file modelF ile.

3.2.5 Test Models

To test the performance of the speaker models on the unknown test utterance the pseudo

code shown in Algorithm 3 is used. As can be seen, various parameters that are passed

to the algorithm are: list of test files flist, order of expansion order, list of trained

models modelList and path resultPath, used to store the result of classification on the test

utterances.

For each test utterance, feature extraction is first performed to get 12 dimensional

MFCC features followed by Voice Activity Detection (VAD) that eliminates the silence

frames from the utterance as shown in step 6. Then these input features are transformed

into a high dimensional kernel space through polynomial expansion as shown in step 7 of

Algorithm 3.

Step 9 through 12 computes the score for each test utterance using all the enrolled

speaker models in the modelList and picks one for which score is maximum as the predicted

speaker of the unknown test utterance.

3.2.6 Scoring and Evaluation

In this section we outline the algorithm used for computing the model score and evaluating

the accuracy of the Identification System. The steps shown in Algorithm 4 is used to

CHAPTER 3. KERNEL MACHINES FOR SPEAKER CLASSIFICATION 24

Algorithm 3 Following algorithm is used for Testing Speaker Models

1: procedure testModels(flist, order,modelList, resultPath)

2: predictionList← empty list data structure

3: models← modelList . Load the Models

4: for each test file in flist do

5: data← retrieve feature vectors for test file

6: newData← VAD(data) . Voice Activity Detection

7: speechFrames← expandFrame(newData, order) . Poly Expansion

8: scoreList← empty list data structure

9: for each model w in modelList do

10: modelScore← computeScore(w, speechFrames) . Score using model w

11: append modelScore in scoreList

12: predictedSpeaker ← max(scoreList) . Speaker with max Score

13: append predictedSpeaker in predictionList

14: Save predictionList permanently in resultPath.

compute per frame score and find the average over the length of the test utterance.

However this method of scoring involves a huge computation time as it has to compute

score for each frame. Therefore we have used a fast scoring method as discussed in Section

3.1.2 to efficiently compute the score over the entire test utterance by taking just a simple

dot product that measures the similarity between the speaker model and the unknown

test utterance.

Algorithm 4 Computing the score using the Speaker Model

1: procedure computeScore(w, speechFrames)

2: totalScore← 0

3: for each vector x in speechFrames do

4: score← wtx

5: totalScore← totalScore+ score

6: averageScore← totalScore/length(speechFrames)

7: return averageScore

The identification accuracy is defined as the number of correctly classified test ut-

terances over the total number of utterances being tested [46]. The pseudo code shown

is Algorithm 5 is used for this purpose. The referenceList is passed to this algorithm

which is actually a database that contains information about the list of enrolled speakers

along with the identifiers of their test utterances. The predictionList that consist of the

predicted speaker model for each test utterance is then compared with the referenceList

as shown in Algorithm 5 and the identification accuracy is computed.

CHAPTER 3. KERNEL MACHINES FOR SPEAKER CLASSIFICATION 25

Algorithm 5 To Compute the Identification Accuracy

1: procedure computeAccuracy(predictionList, referenceList, segmentCount)

2: totalHit← 0

3: for i := 1 to segmentCount do

4: if predictionList[i] = referenceList[i] then

5: totalHit← totalHit+ 1

6: accuracy ← (totalHit/segmentCount) ∗ 100

7: return accuracy

3.3 Concatenation of Frames: Proposed Approach

The proposed method requires chosing the window size, which is basically the number of

frames to be concatenated (from left and right) to the current frame being taken into

consideration. Let us consider the window size chosen to be N and original dimension of

the frame as D.

This method is computationally very challenging and expensive because of the massive

memory requirements as we increase the window size and the order of polynomial. However

incurring such a huge computational effort, we expect our new proposed system to perform

better with more accuracy over the traditional approach where we were just expanding

a single frame but in this approach we are incorporating more information about the

speaker by concatenating frames in time domain.

3.3.1 Method A: Feature Concatenation and Expansion

In this method we basically concatenate the first dimensional feature across N frames

and expand them using polynomial expansion to get a new higher dimensional vector as

the first dimensional feature of the new frame. This process is repeated for remaining

D-1 dimensional features. Once this process is completed, we get a very high dimensional

super vector as a resulting frame from this approach. This procedure is repeated for each

frames in the training/test utterances.

The proposed concept is shown in Figure 3.2. All other steps during training and

testing remains the same as in the traditional approach we discussed in Section 3.2.4 and

3.2.5. The only difference is that before expanding the frames we perform concatenation

of features across all the N frames dimension wise (for all 12 dimension in original frame)

to get a new frame and then polynomial expansion is performed.

3.3.2 Method B: Frame Concatenation and Expansion

Here the idea is to simply concatenate the N (window) frames and expand them into higher

dimensional Kernel Space through polynomial expansion. The only drawback here is the

high computational cost incurred for doing the experiments. The memory requirement

becomes massive for even 5 frame concatenation with order 3 expansion. The new

CHAPTER 3. KERNEL MACHINES FOR SPEAKER CLASSIFICATION 26

Figure 3.2: Feature Concatenation and Expansion.

dimension of the concatenated frame becomes 60 (original frame is 12 dimensional) and

order 3 expansion of this 60 dimensional frame yields 39711 dimensional super vector.

Each frame will be of such a huge dimension, and impostor matrix computation involves

lots of feature vectors from general population which makes this process computationally

very challenging. Due to this reason we have only implemented order 3 system with 3

frame window. The concept discussed under this new method can be seen in Figure 3.3.

This was infact one of the key reason for coming up with the idea of feature concatena-

tion across N (window) frames first and expanding them as discussed in previous method

A.

Figure 3.3: Frame Concatenation and Expansion.

3.3.3 Method C: Frame Concatenation without Expansion

This approach is a very simple approach based on just concatenation of frames in the

input feature space. As shown in figure 3.4 we concatenate N (window) frames first and

obtain a new high dimensional concatenated frame. However we do not perform any

CHAPTER 3. KERNEL MACHINES FOR SPEAKER CLASSIFICATION 27

polynomial expansion which means in our new frame we do not have any cross correlated

polynomial basis terms. The new frame consist of simple concatenation of features in the

input space, thus all the computation in this method would be actually carried out in the

input space itself. All other steps shall remain same as described in the previous Sections

3.2.4 and 3.2.5 except that now we do not perform polynomial expansion.

Figure 3.4: Frame Concatenation without Polynomial Expansion.

3.4 Summary

In this chapter we have discussed the methodology for building Speaker Identification

System based on transformation of input feature space into a high dimensional Kernel

Space through Polynomial Expansion. Various steps needed to perform the task were

discussed in detail and pseudo codes were also provided for different tasks involving

training and testing the target speaker models. Further improvement over the existing

methodology were proposed that basically involves concatenation of frames in the time

domain in order to include more wider temporal context to improve the performance of

the Speaker Identification System.

Chapter 4

Baseline Setup

4.1 Database Description

The database used in this project is a small subset ”Part1 drive2 (p1d2)” of the NIST

SRE-2008 evaluation corpus [3]. It consist of 985 stereo files. These stereo files were

further splitted into two channels: channel A (left) and channel B (right) to obtain a

total of 1970 single channel audio files. The total duration of this database is 152 hours

40 minutes. The corpus basically comprises of two types of speech: telephone speech and

interview speech. About two third of the database p1d2 are interview speech and one

third are of telephonic speech type. The interview speech files are of approximately 3

minutes duration while telephonic speech files are of about 5 minutes duration. However

in this project, we have only used the audio files of type telephone speech.

There are 210 unique speakers under telephone speech category in this database

(p1d2). We prepared a file listing all speakers along with their test utterances that are

labeled ’target’. We discarded all the utterances that were labeled ’nontarget’ because we

are primarily concerned in closed set Identification. So we want to collect those speakers

for which there are sufficient test utterances where the target speaker is speaking. We

then picked 50 speakers which had atleast 3 test utterances as our working data set to do

the experiments.

For training impostors we used audio files that were not used during training and

testing the target speakers. However one important thing to note here is that a speaker

can have more than one model for which audio file segment originates under different

condition. We have carefully selected the speaker models in such a way that the model id

(for the associated training segment) belongs to only one unique speaker. This means

that the 50 targets we have selected are trained using unique training segments from the

database.

The following are the key files provided by the NIST [3] that provides all necessary

information about the speech data available in the corpus which are being used to prepare

various training and test list during the experiment. A sample content of each file is

provided to show the different information provided by these files.

28

CHAPTER 4. BASELINE SETUP 29

• model.key : Each line in the file contains the following details.

10017,f,tdvlv:a,110118,interview,mic-12,ENG,USE

It gives information about (left to right) the model id, gender, segment id with

channel, speaker id, type of speech (phonecall or telephonic), type of channel

(microphone channel or main phone line), language and speaker native language.

This file is basically used to extract the model id associated with the particular

training segment id.

• train.segment : Each line gives the following information.

taacu,22155,short2,phonecall,CHN,109659:phn-main:USE

It specifies (from left to right) the segment id of the training data, ldc id a unique

identifier in the ldc corpus that is given to a specific conversation and recording

per speaker, condition (whether short2 or short3), type of the speech (phonecall or

interview speech), language, and speaker id with channel information.

• trial.key : Each line provides the following information.

10017,fivsw,b,nontarget,N,N,N,Y,N,N,N,N

where the first 4 parameters are model id, test segment id, channel and trial status

respectively while the remaining 8 parameters specify different evaluation conditions

[3].

4.1.1 Data Definition

The Data definition section is included here to give various data files a unique name to

enhance the clarity in understanding its meaning and purpose in the experiment.

• p1d2: is the database that we have used in our experiment. It is a subset of the

NIST SRE-2008 corpus as discussed in section 4.1.

• trainData50: this is a data set consisting of 50 speakers training data taken from

the p1d2 database. This was the data set used for performing our first experiment

in the project.

• test42: is a test data set consisting of 42 utterances from 42 target speakers used

to test the initial system.

• trainData210: is the total set of 210 speakers under telephonic speech category in

the p1d2 database. It is used to train a population of 210 target speakers.

CHAPTER 4. BASELINE SETUP 30

• newTrainData50: is a data set of 50 training utterances from 50 speakers chosen

in such a way that there exist atleast three test utterances in p1d2 labelled as

target. In other words this training data set was chosen ensuring that we have 3

test utterances per speaker where the speaker is actually speaking .

• trainData48: is a set of 48 target training utterances where we have atleast one

minute training utterance after performing Voice Activity Detection (VAD).

• impostor500: is an impostor list of 500 training utterances that is taken from

p1d2 which is completely independent of the training and test data set.

• impostor86: is a list of 86 audio files that is independent of training and test data

set used for training impostor matrix.

• impostor49: is a list of 49 audio files (from the training data set newTrainData50)

used to train the impostor matrix. There will be 50 impostor49 data set, one for

each target speaker.

• test1024: consist of the entire test utterances labeled as target in the p1d2 database.

This was used to test 210 target speaker models trained using trainData210.

• test150: is our main test data set consisting of 150 test utterances where target

speaker is speaking. This data set is designed to test the models trained using

newTrainData50.

• test144: is the test data set designed for 48 speakers in trainData48 set with 3

test utterances (trials) per speaker.

4.1.2 ALIZE Configuration Files

The following are various configuration files of the ALIZE tutorial that were used for

building the GMM-UBM models.

• featExtract A.cfg: Channel A configuration file used for extracting MFCC fea-

tures using HTK.

• featExtract B.cfg: Channel B configuration file used for extracting MFCC features

using HTK.

• norm energy.cfg: Configuration file used for performing Energy Normalization.

• energydetector.cfg: Configuration file used for performing Voice Activity Detec-

tion.

• normFeatures.cfg: Configuration file used for performing Feature Normalization.

CHAPTER 4. BASELINE SETUP 31

• trainWorld.cfg: Configuration file used for training the Universal Background

Model.

• trainTarget.cfg: Configuration file used for training the target speaker by per-

forming MAP adaptation on UBM.

4.2 GMM-UBM Training

The baseline GMM-UBM system is built using the ALIZE toolkit [35]. It provides a step

by step guideline for generating the baseline system . The parameters in the configuration

files for various operations like feature extraction, energy normalization etc. were set

appropriately as per the requirement. These file comes as a part of the ALIZE tutorial,

hence we do not require to create it on our own from scratch. It just requires us to make

very few changes in some parameter values while most of the parameters are kept same

as they were before (default values). We discuss these in the following section.

4.2.1 Feature Extraction

ALIZE provides two different options for reading the MFCC features from the raw speech

file. The first one is using the SPRO tool [5] and the other is with the HTK toolkit [2] using

HCopy command. We have used the HTK option in our work. The configuration files

featExtract A.cfg and featExtract B.cfg for both the channels were set appropriately

and 12 dimensional MFCC features were extracted as discussed in Section 3.2.1.

4.2.2 Energy Normalization

This step is carried out to normalize the energy component in each frame of the speech

utterance so that Voice Activity Detection can perform better in distinguishing speech

from the silence/noise frames. It works by first computing the mean and variance of the

energy (13th coefficient in the MFCC vector) over the entire utterance. This mean is

then removed from each frame energy and divided by the variance in order to make each

frame energy have zero mean and unit variance.

The parameter loadFeatureFileVectSize in the configuration file norm energy.cfg

is initialized ’13’ (instead of 60 which is the default value used by ALIZE). The 13th

coefficient in the MFCC vector is the energy of the frame. Also the parameter feature-

ServerMask is set to ’13’ (default is 19) that instructs the system to just select the

energy component (13th coefficient) for normalization. Further the input file format

specifier loadFeatureFileExtraction is set to ’.mfc’, and the output file format specifier

saveFeatureFileExtraction is set to ’.nrg.mfc’,.

CHAPTER 4. BASELINE SETUP 32

4.2.3 Voice Activity Detection

The next important task to be carried out is removal of silence frames from the speech

utterance in order to enhance the system performance by ensuring that our models are

trained using only voiced speech segments. Hence we perform Voice Activity Detection

(VAD) for this purpose. All the parameters in the configuration file energydetector.cfg

are set to the default values except the parameter loadFeatureFileExtension which is

set to ’.nrg.mfc’ since we specified ’.nrg.mfc’ as output file extension while doing energy

normalization. Using this configuration file the VAD is carried out to remove all the

silence frames from the utterance.

4.2.4 Feature Normalization

The audio files present in the database p1d2 originates from different channels, therefore

while building background and target models it is very important to eliminate the influence

of channel variation in the model. Hence Feature Normalization is often performed to

suppress these channel effects as discussed in Section 2.4.5.

The parameters saveFeatureFileExtension is changed to ’.norm.prm’, vectSize to ’13’

(default is 60) and loadFeatureFileExtension to ’norm.feat.mfc’ in the configuration file

normFeatures.cfg. Other parameters were set to their default values.

4.2.5 UBM Training

The Universal Background Model (UBM) is trained using impostor500 that consist

of 500 telephonic speech utterances from the p1d2 database that were not used during

training or testing the target models. This is a speaker independent general model trained

to capture the general characteristics of a large number of speaker population as discussed

in Section 2.3.3. The energy coefficient is removed from each frame. The number of

gaussian component that has been chosen to build the UBM is 2048 and the number of

(EM) iterations for estimating the optimal model parameters is 8. These parameter values

were set appropriately in the configuration file trainWorld.cfg and the background

model is built using the configuration file.

4.2.6 Training Target Speaker

Front end processing on each target speaker utterance is performed as described in the

previous sections. Then speaker enrollment/training is performed through maximum a

posteriori (MAP) adaptation on the background model (UBM) with the speaker data to

make it speaker specific model representing a particular speaker.

The energy coefficient is removed from each frame and MAP adaptation method is

selected as the underlying adaptation algorithm in the configuration file trainTarget.cfg.

We also set the parameter meanAdapt to ’true’ to specify that we only want to perform the

CHAPTER 4. BASELINE SETUP 33

mean adaptation. Likewise many other relevant parameters such as file paths are properly

initialized and the target models are trained using the configuration file trainTarget.cfg.

4.3 Testing

Identification of an unknown test utterance is now performed by computing the score

using the MAP adapted speaker model and the background UBM model. Then the log

likelihood difference between the target score and the background score is computed. This

becomes the final score for the given test utterance. The procedure is repeated for all

the enrolled speaker models in the system. Then the GMM-UBM Identification System

selects the model for which score is highest as the predicted speaker of the unknown test

utterance as shown in Figure 2.2.

4.4 Summary

ALIZE toolkit that provides a step by step guideline, was used for building the GMM-UBM

baseline system. UBM was trained using 500 telephonic speech data with 2048 gaussian

mixture components. 50 speakers in the data set newTrainData50 were trained by

performing MAP adaptation on the background UBM model to create Speaker Dependent

GMM-UBM models. Testing were then performed on test150 data set consisting of 150

test utterances. Various steps involving feature extraction, normalization etc are carried

out as discussed in the chapter.

Chapter 5

Experiments and Results

In this chapter we shall describe various experiments that were performed during the

project.

5.1 Baseline Results

The result of the GMM-UBM baseline system using 12 dimensional static MFCC features

is shown in the following table.

Baseline System Identification Accuracy %

GMM-UBM 57.3

Table 5.1: Baseline GMM-UBM Results

The results shown above is obtained by testing the system on data set test150

consisting of 150 test utterances. The result is not as good as we expected, the primary

reason could be because of the very fact that the data set is not a clean speech. It is

a noisy telephone speech data that contains lots of silence and filler sound (like umm ,

uhhh, mmmm).

5.2 Initial Experiments

As our first task in the project was to replicate the system as described in [8][16] and

then extend it with concatenation of neighboring frames we decided to run our initial

experiments with a small data set and trained 50 speakers using trainData50 and tested

the performance on test42. The recognition result is shown in table 5.2.

We observe that the system performed well on training data and gave 100% identifi-

cation accuracy with polynomial order 3 and 4. The performance on unseen data seems

to improve with increase in the polynomial order. Though we did not get a remarkable

performance on test set, however it gave an intuition that the methodology and our

approach was working correctly. With this experimental observation we decided to run

34

CHAPTER 5. EXPERIMENTS AND RESULTS 35

Polynomial Order Training Data % Test Data %

1 42.0 14.6

2 94.0 39.0

3 100.0 58.5

4 100.0 63.4

Table 5.2: Performance of the system for different polynomial order that is trained using

trainData50 and impostor86 data set while tested on test42 test set.

experiment on larger speaker population with sufficient test utterances for each speaker

model.

Therefore we used entire data set trainData210 to train 210 target speakers. Testing

was further performed using the entire telephonic test set test1024. Following table

shows the performance of the system.

Impostors Polynomial Order Identification Accuracy %

86
2 7.3

3 11.9

500
2 8.0

3 12.9

Table 5.3: Performance of the system trained using trainData210 with impostor86

and impostor500 while testing being performed on test1024 data set

As we increase the polynomial order, the number of basis terms (cross-correlated

terms) increases during expansion into higher dimension, therefore we see an increase

upto 4% accuracy in order 3 compared to order 2 results. Also we find that using more

number of impostors leads to some improvement in classification performance. With 500

impostors we observe a gain of about 0.7% with order 2 and 1% with order 3 polynomial

expansion.

However the results are very poor and not upto an acceptable figure. We found two

reasons for this. Firstly, its because of the fact that with large target population number

of comparisons increases while increasing the probability of false classification. Hence

there is a high chance for degradation of overall performance. Secondly, we found that

the test data was not uniformly distributed among the 210 speaker in the test1024 data

set. There were some speaker without any test utterances and some with very less test

utterances (1 to 4). However for few target speakers there were many test utterances

(20 to 40). So this imbalance in the test utterance per speaker creates a bias in overall

system performance.

This made us think to chose our training set and test set more carefully from the

database p1d2 with uniform test utterances for each target speaker being modeled. We

then chose 50 target speakers training data set newTrainData50 in such a way that

CHAPTER 5. EXPERIMENTS AND RESULTS 36

each speaker in this set had 3 test utterances where these speakers were found speaking.

The test150 is the desired test data set consisting of 150 test utterance (3 per target

speaker) which is used to perform our further experiments.

5.3 Different Impostor Population

In this experiment we have used newTrainData50 to train 50 speakers and tested using

test150 data set. The motive here is to analyze more closely the impact on identification

performance with different impostor population. In first case we trained each speaker

against 49 speakers. In other words while training classifier for a particular speaker

remaining 49 speakers were used as impostor. The process was repeated for all speakers.

In second case we used impostor500 data set as impostor and trained the classifier for

each speaker against this impostor using one vs all binary classification.

Since the number of impostors is relatively larger than the speaker so we used only 30

seconds speech data from each impostor audio file to build the impostor model (i.e the

impostor Correlation Matrix). With 30 seconds speech most of the general characteristics

of the general speaker population can be captured while the impostor matrix dimension

can be kept to an optimum number.

Impostors Polynomial Order Identification Accuracy %

49

2 19.3

3 26.0

4 28.0

500

2 21.3

3 26.0

4 30.6

Table 5.4: Performance on test150 when target models are trained using different number

of impostors

As can be seen while using an unseen data set of 500 impostors impostor500 there

is an improvement of about 2% over impostor49 set that consist of 49 speakers from

the training set. As we increase the polynomial order from 2 to 4 we see a consistent

raise of about 4% to 5% accuracy with impostor500. However with impostor49 the

improvement with increase in polynomial order is not so consistent as can be seen from

the table. There is a gain of 6.67% with order 3 compared to order 2 results, however

with order 4 its just 2% gain in comparison to order 3 results. This shows that the system

gives good performance when we use unseen data as impostors.

CHAPTER 5. EXPERIMENTS AND RESULTS 37

5.4 Compensation for Different Length Training Data

After doing VAD, we found that the training and test utterance for all the target speakers

are never same. Though all training and test data are of 5 minutes length but it contains

lots of fillers (like ummm, uhh,mmmm etc) and silence frames. The data are never

uniformly distributed. This means that some speaker models are over trained with more

data while some are under trained as there were very small amount of actual speech

where the speaker was actually speaking some words that could contribute significant

phonetic content which could be modeled properly. There were two speaker models in

newTrainData50 which were actually trained on just 23 sec and 43 sec of speech as

remaining frames were all silence and noise which were removed during Voice Activity

Detection. So these models would not be able to perform well during recognition in

comparison to other models trained with good amount of input data.

Motivated from the above fact, we thought of experimenting the system with some

compensation with variable length training data among different target speakers and

observe differences if any. Though there are many compensation strategies [12] we have

used a simple compensation method as discussed in [8][12]. The basic idea here is to

divide the score of the classifier by the training data normalization factor. The new score

is given as,

newScore =
score

normi
(5.1)

where normi = Ni
N is the speaker i training data normalization factor, N =

∑Nspkr

j=1 Nj is

the total number of speech frames in the entire training set (all speakers) and Ni is the

number of frames in speaker i training data.

Impostors Order No Compensation % With Compensation %

500

2 21.3 22.0

3 26.0 28.0

4 30.6 32.0

Table 5.5: Performance of the System on test150 test set with and without compensation

on training length.

From the above results we see that with inclusion of above compensation method

there is a gain of about 2% in the identification accuracy.

5.5 Varying Length of Training and Test Data

In this experiment our main objective is to see the impact in the identification performance

when models are trained and tested on different length training and test utterance. We

removed two target speakers having less than 60 seconds utterance (after VAD) from the

list and created a new training set of 48 speakers called trainData48 and evaluated the

performance on test144.

CHAPTER 5. EXPERIMENTS AND RESULTS 38

5.5.1 Fixed Amount of Training Data

In this part of experiment we trained 48 target speakers using 30 seconds speech for order

2, 3 and 4 polynomials and tested the performance on test utterance of length 30 second,

15 second and 1 second respectively. The following table gives the identification accuracy

for the different cases we considered.

Amount of

Training data
Polynomial Order

Length of Test Segment

30sec % 15sec % 1sec %

30 seconds

2 18.7 16.6 12.5

3 25.0 20.1 13.2

4 26.38 23.6 15.9

Table 5.6: Performance of the system trained using trainData48 data set with 30 seconds

speech per target speaker while testing is performed on test144 with different test length.

We observe the following facts from the above experiment:

• The best performance was found for 30 second test segment among the three test

length segments. This is true for all the polynomial order. It means that performance

becomes better with good length of test data.

• As the size of test data decreases from 30 seconds to 1 seconds we observe a decrease

in the performance as well.

• As we increase the polynomial order, performance of the recognition increases as

can be seen in the above table.

5.5.2 Fixed Amount of Test Data

Here we trained the system with two different utterance length 30 seconds and 60 seconds

respectively while testing was performed on 5 seconds utterance. We have chosen a

very small test utterance length in order to analyze the system behaviour under limited

test data. The following table gives the identification accuracy obtained under different

training criterion.

Amount of

Training data

Performance on 5 second speech %

Order 2 Order 3 Order 4

30 seconds 18.7 18.7 24.3

60 seconds 18.1 20.1 25.0

Table 5.7: Performance of the Identification System trained using trainData48 with

different training utterance length while tested on test144 test set of 5 seconds length

each.

CHAPTER 5. EXPERIMENTS AND RESULTS 39

As can be seen from Table 5.7, best performance is achieved for order 4 polynomial in

both the cases (i.e training with 30 seconds and 60 seconds data). The accuracy seems to

be similar with order 2 and order 3 when system is trained on 30 seconds speech data.

The reason could be because of the fact that the test utterance is very short and model

has been trained with very less training data. However when the system is trained on

60 seconds data, we observe that performance increases as we increase the order of the

polynomial.

This gives a very clear intuition about the fact that if a model is trained with larger

set of training data then the system becomes more powerful and can perform reasonably

well during recognition compared to the one being trained with lesser data.

Further from Table 5.6, we observe that with an increase in length of test utterance

from 1 second to 30 second there is an increase in the recognition accuracy. Thus it gives

an idea about the necessity of having a sufficiently good amount of training and test data

to have a good identification performance.

5.6 Concatenation Results

This section describes the results of the various experiments that were performed using

the proposed method of concatenating neighbor frames.

5.6.1 Method A

The following table 5.8 shows the performance of the system based on proposed Method

A with order 2 and 3 polynomial expansion for different window size.

Impostors Order Window (N) New Frame Size Accuracy %

500 2 19 2520 16.3

200 3
7 1440 18.0

11 4368 19.3

Table 5.8: Identification Performance of the System on test150 data set for different

polynomial order and window size. Original frame size is 12.

The result was not as good as we were expecting from our proposed system. The

system did not perform well as compared to our initial system for both order 2 and order

3 polynomials. As can be observed from Table 5.4 the accuracy of the initial system with

500 impostor and order 2 polynomial is 21.3% while the new system just gave 16.3%.

Also with order 3 polynomial the new system could give only 19.3% which is very less in

comparison to our initial system identification accuracy of 26.0%.

The reason why our proposed system failed to give good results could be because of the

fact that we are loosing cross correlation between the features in the higher dimensional

kernel space as we had concatenated the features in N (window) frames dimension wise i.e

CHAPTER 5. EXPERIMENTS AND RESULTS 40

we took all the first dimension feature from all N frames and expanded these N features

using polynomial expansion and again we did it for second dimension across all frames

and so on. In the process when expansion takes place, we do not get any cross correlated

polynomial basis terms in the kernel space. Due to this reason system performed poorly

compared to the initial system.

5.6.2 Method B

In this method we concatenate the frames directly and perform the polynomial expansion

as discussed in Section 3.3. The results shown in Table 5.9 gives a message that the

conclusion we had drawn for the failure of method A was indeed correct as we see a

very good improvement over the accuracy when concatenating frames directly. The

reason is because Method B preserves the cross correlation between the features when

transformed into higher dimensional space through polynomial expansion. Hence we

observe improvement in the performance in comparison to the initial system.

For polynomial order 2 we ran two experiments. In the first we used 500 impostors

with 3 frame concatenation window and got 25.3% identification performance which is

better than the initial system accuracy of 21.3%. Next we tried reducing the impostor

size to 100 while increasing the window size to 11. In this case we obtained more better

accuracy of 32%. This means that an increase in window size improves performance

however it also increases the computational cost dramatically.

Next with polynomial order 3 we performed only one experiment because of the

computational constraint. We used 100 impostor and 3 frame window in this case and

achieved an accuracy of 32% which is an improvement over the initial system accuracy

of 28% with polynomial order 3.

Impostors Order Window (N) New Frame Size Accuracy %

500 2 3 703 25.3

100 2 11 8911 32.0

100 3 3 9139 32.0

Table 5.9: Performance of the System on test150 that is trained using Frame Concatena-

tion and Expansion approach. Original frame size is 12.

Though we are unable to perform experiments by concatenating large number of frames

with higher order polynomials due to the high computational cost involved, but above

results proved that our proposed algorithm works well and gives a good improvement over

the initial system. With order 2 polynomial we got an improvement of more than 10%

when 11 frames were used as concatenation window. Also with order 3 it showed an

improvement of 4% over initial system. It also showed that the accuracy with 11 frames

and order 2 seems to be similar with that of order 3 system with 3 frame concatenation.

However computationally order 3 is very expensive in comparison to order 2 system as

CHAPTER 5. EXPERIMENTS AND RESULTS 41

can be seen in the table, the number of features generated is 9139 per frame with order

3 polynomial expansion while its 8911 with order 2. But there is one point to be noticed

that with small polynomial order we are able to increase the window size and observe an

increased performance which are comparable (almost similar) and may be even better

than what we could have achieved with higher order polynomials of lesser frame window

size (as we see in Table 5.9).

5.6.3 Method C

In this experiment we wanted to observe the performance of the system when trained

with just concatenating large number of frames without transforming the input space to

a Polynomial Kernel Space. Though the concatenated frames results in a huge dimension

there exist no cross correlated polynomial basis terms in the new frame. It consist of only

large number of features in the original linear input space.

This means that the binary classifier being trained with such linear data will be

actually trying to classify two classes of non linear data. Hence there will be high chances

of misclassification resulting in poor recognition performance.

The following Table 5.10 shows the performance on three different window sizes: 301,

501 and 701. It also shows the dimension of the new frame after concatenation.

Impostors Window (N) New Frame Size Accuracy %

500

301 3612 20.6

501 6012 22.0

701 8412 18.6

Table 5.10: Performance of the system on test150 that is trained using only Frame

Concatenation without any Polynomial Expansion. Original frame size is 12.

In this case our best system performance 22.0% is obtained with a window of 501

frames which is better than the initial system with order 2 polynomial expansion (21.3%)

but poorer in comparison with order 3 (26.0%) and order 4 (30.6%) systems.

Though we are concatenating a very large number of frames but the result of the

identification on test150 seems to be poor. Further we observe that the performance

increases as we increased the window size from 301 to 501. We then increased the window

size to 701 hoping to get more improvement but the performance was degraded with this

window size in comparison to previous window with 501 frames. This shows an instance

of overfitting.

Hence the optimal number of window size needs to be chosen carefully which can

be obtained by doing lots of experiments and trying (guessing) with different random

numbers (window size) and find the point where the system gives the optimal performance.

However due to constraint in time, we could not run more experiments on this method

varying the window size to draw more useful observations.

CHAPTER 5. EXPERIMENTS AND RESULTS 42

5.7 Summary

We replicated the identification system as described in [8] and found best performance

with polynomial order 4. However GMM-UBM baseline system outperformed all our

system performance. Different experiments were performed to understand the significance

of length of training and test data. Also experiments were carried out to see the effect of

different impostor population in recognition performance. The proposed methodology

involving concatenation of neighboring frames were also implemented as discussed in the

chapter.

Chapter 6

Conclusion

The project was successfully implemented using Kernel Machines, Polynomial Kernel

in particular. A small subset of the NIST SRE 2008 Corpus consisting of only tele-

phonic speech was used as our experimental database. A detailed literature on Speaker

Recognition was presented where we described various features commonly used, different

Speaker Modeling Techniques and the Current State of the Art Technique, the i-Vectors.

Some of the common challenges and problems often encountered in the field were pointed

out. Current and future research trends along with some of the commonly used software

tools in Speaker Recognition were also discussed briefly. Then a detailed description

of the methodology based on Kernel Machines for Speaker Classification was presented.

Various steps needed to be followed for implementing the System were discussed. Our

proposed methodology that aims to enhance the performance of the Identification System

by including more wider temporal context through Frame Concatenation were presented.

The baseline GMM-UBM System was developed using the ALIZE toolkit. 500 impostors

and 2048 gaussian mixture components were used. Different experiments were performed

in Chapter 5 that examined several aspects of our Speaker Identification System based

on Kernel Machines. Some of the key observation and conclusion can be stated as given

below:

• An increase in polynomial order increased the performance of the Identification

system. This is due to the fact that the number of polynomial basis terms (features)

increases during polynomial expansion.

• Order 4 Systems seem to provide better results in comparison to Order 2 and Order

3. However we found Order 3 systems to be more optimal one as it gives recognition

accuracy that is closer to Order 4 systems while incurring very less computational

cost.

• This also gives an intuition that as we keep increasing the polynomial order the

model starts overfitting.

43

CHAPTER 6. CONCLUSION 44

• The performance of the Identification System improves when unseen data is used to

train impostor model. Also experiments showed that use of large number of unseen

data in training impostor model increases the performance accuracy.

• Experiments using different length training and test data showed that its very

important to have sufficient data in training and testing the Speaker models to

achieve a good degree of recognition performance on unseen data.

• Normalization of the classifier score by compensating with training data length

showed 2% improvement in accuracy over the original system (as shown in Table

5.5).

• The methodology [8] works well on clean speech however it is very sensitive to noisy

speech. Authors in [8][15] have mostly used this methodology on a clean speech

YOHO database [19] that consist of a fixed length combinational lock phrase (eg.

”22-34-45”).

• YOHO database are specifically designed for doing experiments on Speaker Recog-

nition. However we did our experiments on telephonic speech data which is very

noisy. This is one of the key reason why our systems did not work well as the data

being used in itself was a big challenge.

• Proposed Method A did not work because the polynomial expansion was done on

the concatenated features that consist of only the same dimensional terms of the

N window frames. Therefore, we were losing the cross correlation across original

dimensional terms. As a consequence the recognition performance was very poor.

• Method C also did not work despite concatenating a huge number of frames (we

tried upto 700). This is because no polynomial expansion is performed here, and the

high dimensional frame consists of only the original features in linear input space.

• Method B on the contrary improved the recognition results. It is observed that

with the use of more larger window the identification accuracy increases however

the computational cost involved also increases dramatically.

• The main challenge and difficulty in this project was to manage the huge computa-

tional cost involved with an increase in Order and window size.

• Kernel Trick could not be implemented in our project because we were losing the

actual order of similarity measure for computation of Correlation Matrix. Rather

than computing the similarity measure of the features across time the Kernel Trick

would compute the similarity measure of features over the entire dimension.

Also the baseline GMM-UBM system outperformed the performance of all our systems

that is based on Kernel Machines because of the above mentioned reasons.

Bibliography

[1] Cholesky decomposition - wikipedia, the free encyclopedia. http://en.wikipedia.

org/wiki/Cholesky_decomposition. Accessed: 03-09-2014.

[2] HTK speech recognition toolkit. http://htk.eng.cam.ac.uk/. Accessed: 22-08-

2014.

[3] NIST speech group website. http://www.itl.nist.gov/iad/mig//tests/sre/

2008/. Accessed: 22-08-2014.

[4] Polynomial kernel - wikipedia, the free encyclopedia. http://en.wikipedia.org/

wiki/Polynomial_kernel. Accessed: 06-09-2014.

[5] SPro home page. http://www.irisa.fr/metiss/guig/spro/. Accessed: 22-08-

2014.

[6] SVM-light support vector machine. http://svmlight.joachims.org/. Accessed:

22-08-2014.

[7] SVMTorch. http://bengio.abracadoudou.com/SVMTorch.html. Accessed: 22-08-

2014.

[8] Khaled T Assaleh and William M Campbell. Speaker identification using a polynomial-

based classifier. In Signal Processing and Its Applications, 1999. ISSPA’99. Pro-

ceedings of the Fifth International Symposium on, volume 1, pages 115–118. IEEE,

1999.

[9] Bishnu S Atal. Effectiveness of linear prediction characteristics of the speech wave

for automatic speaker identification and verification. the Journal of the Acoustical

Society of America, 55(6):1304–1312, 1974.

[10] Roland Auckenthaler, Michael Carey, and Harvey Lloyd-Thomas. Score normalization

for text-independent speaker verification systems. Digital Signal Processing, 10(1):42–

54, 2000.

[11] Christopher M Bishop et al. Pattern recognition and machine learning, volume 1.

springer New York, 2006.

45

BIBLIOGRAPHY 46

[12] Herve A Bourlard and Nelson Morgan. Connectionist speech recognition: a hybrid

approach, volume 247. Springer, 1994.

[13] Christopher JC Burges. A tutorial on support vector machines for pattern recognition.

Data mining and knowledge discovery, 2(2):121–167, 1998.

[14] William M Campbell. A sequence kernel and its application to speaker recognition.

In Advances in Neural Information Processing Systems, pages 1157–1163, 2001.

[15] William M Campbell and Khaled T Assaleh. Polynomial classifier techniques for

speaker verification. In Acoustics, Speech, and Signal Processing, 1999. Proceedings.,

1999 IEEE International Conference on, volume 1, pages 321–324. IEEE, 1999.

[16] William M Campbell, Khaled T Assaleh, and Charles C Broun. Speaker recognition

with polynomial classifiers. Speech and Audio Processing, IEEE Transactions on,

10(4):205–212, 2002.

[17] William M Campbell, Joseph P Campbell, Douglas A Reynolds, Elliot Singer, and

Pedro A Torres-Carrasquillo. Support vector machines for speaker and language

recognition. Computer Speech & Language, 20(2):210–229, 2006.

[18] William M Campbell, Douglas E Sturim, and Douglas A Reynolds. Support vector

machines using gmm supervectors for speaker verification. Signal Processing Letters,

IEEE, 13(5):308–311, 2006.

[19] Joseph P Campbell Jr. Testing with the yoho cd-rom voice verification corpus. In

Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International

Conference on, volume 1, pages 341–344. IEEE, 1995.

[20] Joseph P Campbell Jr. Speaker recognition: a tutorial. Proceedings of the IEEE,

85(9):1437–1462, 1997.

[21] Joseph P Campbell Jr and Douglas A Reynolds. Corpora for the evaluation of speaker

recognition systems. In Acoustics, Speech, and Signal Processing, 1999. Proceedings.,

1999 IEEE International Conference on, volume 2, pages 829–832. IEEE, 1999.

[22] KH Davis, R Biddulph, and S Balashek. Automatic recognition of spoken digits.

The Journal of the Acoustical Society of America, 24(6):637–642, 1952.

[23] Steven Davis and Paul Mermelstein. Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences. Acoustics, Speech

and Signal Processing, IEEE Transactions on, 28(4):357–366, 1980.

[24] Najim Dehak, Patrick Kenny, Réda Dehak, Pierre Dumouchel, and Pierre Ouellet.

Front-end factor analysis for speaker verification. Audio, Speech, and Language

Processing, IEEE Transactions on, 19(4):788–798, 2011.

BIBLIOGRAPHY 47

[25] George R Doddington, Mark A Przybocki, Alvin F Martin, and Douglas A Reynolds.

The nist speaker recognition evaluation–overview, methodology, systems, results,

perspective. Speech Communication, 31(2):225–254, 2000.

[26] RB Dunn, TF Quatieri, DA Reynolds, and JP Campbell. Speaker recognition

from coded speech and the effects of score normalization. In Signals, Systems and

Computers, 2001. Conference Record of the Thirty-Fifth Asilomar Conference on,

volume 2, pages 1562–1567. IEEE, 2001.

[27] Sadaoki Furui. Fifty years of progress in speech and speaker recognition. The Journal

of the Acoustical Society of America, 116(4):2497–2498, 2004.

[28] Gene H Golub and Charles F van Van Loan. Matrix computations (johns hopkins

studies in mathematical sciences). 1996.

[29] JA Haigh and JS Mason. Robust voice activity detection using cepstral features. In

TENCON’93. Proceedings. Computer, Communication, Control and Power Engineer-

ing. 1993 IEEE Region 10 Conference on, pages 321–324. IEEE, 1993.

[30] Hynek Hermansky. Perceptual linear predictive (plp) analysis of speech. the Journal

of the Acoustical Society of America, 87(4):1738–1752, 1990.

[31] Hynek Hermansky and Nelson Morgan. Rasta processing of speech. Speech and

Audio Processing, IEEE Transactions on, 2(4):578–589, 1994.

[32] Patrick Kenny, Gilles Boulianne, Pierre Ouellet, and Pierre Dumouchel. Joint factor

analysis versus eigenchannels in speaker recognition. Audio, Speech, and Language

Processing, IEEE Transactions on, 15(4):1435–1447, 2007.

[33] Patrick Kenny, Pierre Ouellet, Najim Dehak, Vishwa Gupta, and Pierre Dumouchel.

A study of interspeaker variability in speaker verification. Audio, Speech, and

Language Processing, IEEE Transactions on, 16(5):980–988, 2008.

[34] Tomi Kinnunen and Haizhou Li. An overview of text-independent speaker recognition:

from features to supervectors. Speech communication, 52(1):12–40, 2010.

[35] Anthony Larcher, Jean-Francois Bonastre, Benoit GB Fauve, Kong-Aik Lee,

Christophe Lévy, Haizhou Li, John SD Mason, and Jean-Yves Parfait. Alize 3.0-open

source toolkit for state-of-the-art speaker recognition. In INTERSPEECH, pages

2768–2772, 2013.

[36] John Makhoul. Linear prediction: A tutorial review. Proceedings of the IEEE,

63(4):561–580, 1975.

[37] S Matsoukas, R Iyer, O Kimball, J Ma, T Colthurst, R Prasad, and CL Kao. Bbn

cts english system. In NIST RT-03 Workshop, 2003.

BIBLIOGRAPHY 48

[38] Tomoko Matsui and Sadaoki Furui. Comparison of text-independent speaker recogni-

tion methods using vq-distortion and discrete/continuous hmm’s. Speech and Audio

Processing, IEEE Transactions on, 2(3):456–459, 1994.

[39] J Oglesby and JS Mason. Radial basis function networks for speaker recognition.

In Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 International

Conference on, pages 393–396. IEEE, 1991.

[40] Jason Pelecanos and Sridha Sridharan. Feature warping for robust speaker verification.

2001.

[41] Douglas A Reynolds. Experimental evaluation of features for robust speaker identifi-

cation. Speech and Audio Processing, IEEE Transactions on, 2(4):639–643, 1994.

[42] Douglas A Reynolds. Speaker identification and verification using gaussian mixture

speaker models. Speech communication, 17(1):91–108, 1995.

[43] Douglas A Reynolds. Comparison of background normalization methods for text-

independent speaker verification. In Eurospeech, 1997.

[44] Douglas A Reynolds. Channel robust speaker verification via feature mapping. In

Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03). 2003 IEEE

International Conference on, volume 2, pages II–53. IEEE, 2003.

[45] Douglas A Reynolds, Thomas F Quatieri, and Robert B Dunn. Speaker verification

using adapted gaussian mixture models. Digital signal processing, 10(1):19–41, 2000.

[46] Douglas A Reynolds and Richard C Rose. Robust text-independent speaker identifi-

cation using gaussian mixture speaker models. Speech and Audio Processing, IEEE

Transactions on, 3(1):72–83, 1995.

[47] Laszlo Rudasi and Stephen A Zahorian. Text-independent talker identification with

neural networks. In Acoustics, Speech, and Signal Processing, 1991. ICASSP-91.,

1991 International Conference on, pages 389–392. IEEE, 1991.

[48] Roberto Togneri and Daniel Pullella. An overview of speaker identification: Accuracy

and robustness issues. Circuits and Systems Magazine, IEEE, 11(2):23–61, 2011.

[49] V Wan and WM Campbell. Support vector machines for speaker verification and

identification. In Neural Networks for Signal Processing X, 2000. Proceedings of the

2000 IEEE Signal Processing Society Workshop, volume 2, pages 775–784. IEEE,

2000.

